

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name				
Basics of designing elements a	and assemblies of mac	nines		
Course				
Field of study		Year/Semester		
Construction and exploitation	of means of transport	2/4		
Area of study (specialization)		Profile of study		
		general academic		
Level of study		Course offered in		
First-cycle studies	polish			
Form of study		Requirements		
part-time		compulsory		
Number of hours				
Lecture	Laboratory cla	ses Other (e.g. online)		
18				
Tutorials	Projects/semir	ars		
	18			
Number of credit points 4				
Lecturers				
Responsible for the course/lecturer:		Responsible for the course/lecturer:		
PhD. Eng. Krzysztof Talaśka		PhD. Eng. Dominik Wilczyński		
email: krzysztof.talaska@put.poznan.pl		email: dominik.wilczynski@put.poznan.pl		
Tel. No.: 61 665-2244		Tel. No.: 61 224-4512		
Faculty of Mechanical Engineering		Faculty of Mechanical Engineering		
Piotrowo Str. 3, 60-965 Poznań		Piotrowo Str. 3, 60-965 Poznań		

Prerequisites

Knowledge: The student has knowledge of physics (mechanics in the field of: statics, kinematics and dynamics), mathematics, after being passed in the study program

Skills: The student has the ability to solve problems in the field of mechanics, strength of materials, selection of materials based on their knowledge and the ability to obtain information from the indicated sources

Social competences: The student understands the need to expand their competences, shows readiness to cooperate as part of a team

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course objective

1. To teach students the basics of machine construction, within the scope defined by the curriculum content specific to the field of study.

2. To develop students' skills:

- calculating and constructing machine elements and assemblies,

- documenting and reading technical documentation based on the knowledge gained from the object machine engineering graphics,

- practical use of knowledge gained from the following subjects: mechanics, material strength, mechanical engineering, material science.

3. to improve students' teamwork skills.

Course-related learning outcomes

Knowledge

Student has basic knowledge in the field of machine construction and machine and mechanism theory, including mechanical vibration.

Student has basic knowledge of standardized rules of structure recording and engineering graphics.

Student has basic knowledge of material strength, including the basics of the theory of elasticity and ductility, stress hypotheses, methods of calculating beams, membranes, shafts, connections and other simple structural elements, as well as methods of testing the strength of materials and the state of deformation and stress in mechanical structures.

Skills

Student can plan and realize the process of constructing uncomplicated machine assemblies or machines and formulate requirements for electronic components and automatic control systems for industry specialists in mechatronic systems.

Can prepare technical documentation for a descriptive-drawing engineering task.

Social competences

Student is ready to critically assess his knowledge and content.

Student is ready to acknowledge the importance of knowledge in solving cognitive and practical problems and to consult with experts in case of difficulties in solving the problem on his own.

Student is ready to perform responsible professional roles, including:

- Observing the rules of professional ethics and demanding it from others,

- care for the achievements and traditions of the profession.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Written exam from the lecture, project execution.

Programme content

Basic principles of the design process, elements of the mechanism, characteristics of the types of loads, defining loads and formulating appropriate strength conditions. Connections and their calculation: soldered, welded, welded, glued; riveted, shaped connections: key, bolt, threaded connections. Screw mechanisms: examples and application, design calculations. Flexible elements: springs, rubber flexible elements.

Teaching methods

Lecture, project

Bibliography

Basic

1. Praca zbiorowa pod red. Z. Osińskiego, Podstawy konstrukcji maszyn, PWN, W-wa, 1999

2. Praca zbiorowa pod red. M. Dietricha: Podstawy konstrukcji maszyn. Tom 3, WNT, Wa-wa, 1999.

3. J. Żółtowski, Podstawy Konstrukcji Maszyn, Oficyna Wydawnicza Politechniki Warszawskiej, 2002.

4. R. Knosala, A. Gwiazda, A. Baier, P. Gendarz, Podstawy Konstrukcji Maszyn, WNT, Warszawa 2000.

5. A. Dziurski, L. Kania, A. Kasprzycki, E. Mazanek, Przykłady obliczeń z Podstawy Konstrukcji Maszyn, Tom 1 i 2, WNT, Warszawa 2005.

Additional

1. Dietrich M., Podstawy konstrukcji maszyn, Wydawnictwo Naukowo Techniczne 1995.

2. Niezgodziński M. E., Niezgodziński T., Wzory, wykresy i tablice wytrzymałościowe, Wydawnictwo Naukowo Techniczne, 1996,

3. Sempruch J., Piątkowski T., Podstawy konstrukcji maszyn z CAD, Piła, Państwowa Wyższa Szkołą zawodowa w Pile, 2006,

4. Bahl G., Beitz W., Nauka konstruowania, WNT, Warszawa 1984

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	120	4,0
Classes requiring direct contact with the teacher	60	2,0
Student's own work (literature studies, preparation for tests/exam, project preparation) ¹	60	2,0

¹ delete or add other activities as appropriate